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1. Phenomenology - Meteori tes  from t h e  dust p a r t i c l e s  of t h e  zod iaca l  cloud 1 3 

measuring 0.001 cm i n  diameter,  up t o  l a r g e  chunks measuring meters and muzh m r e  

(whose fragments can be seen i n  museums, t h e  Smithsonizn i n  p a r t i c u l a r ) ,  are mcesly 

members of t he  s o l a r  system. They travel around the  sun wi th  p l ane ta ry  v e l o c i t i e s ,  

t e n s  of ki lometers  pe r  second. However, t h e i r  o r b i t s  l a c k  t h e  r e g u l a r i t y  c f  planetary 

o r b i t s  which do no t  i n t e r s e c t ,  thus preventing c o l l i s i o n s  between t h e  p l a n e t s ,  or t s o  

c l o s e  approaches and s t rong  mutual pe r tu rba t ions ,  

and may i n t e r s e c t  p l ane ta ry  o r b i t s ,  s o  t h a t  c o l l i s i o n s  with t h e  p l a n e t s  may t ake  

I 

I Meteoric o r b i t s  may be of any shape 

place.  

When a m e t e o r i t e  c o l l i d e s  with t h e  e a r t h ,  i t  f i r s t  e n t e r s  t h e  terrestrial 

atmosphere which acts as a braKe, s t o p s  and h e a t s  t he  body t o  t h e  po in t  of vaporizat ion.  

Small m e t e o r i t e s  are completely stopped by t h e  atmosphere, w i t h  a c e r t a i n  propz.rtion 

of t h e i r  m a s s  evaporated (depending on ve loc i ty  and s i z e ) .  Large bodies may s ~ v i v e  

as m e t e o r i t i c  chunks, l o s i n g  some of t h e i r  sk in  l a y e r s  b u t  preser7kng t h e  in re r fon  

cold and i n t a c t  as i t  w a s  i n  i n t e r p l a n e t a r y  space.  

When t h e  load of t h e  m e t e o r i t e  (assumed s p h e r i c a l )  pe r  a n 2  cross s e c t i o n ,  

m = M/.rrr2 = - 4 r 6  (gram/cm 2 ) 
3 

(M = m a s s ,  r = r a d i u s ,  6 = densi ty  of t h e  me teo r i t e )  

exceeds t h e  m a s s  of t h e  atmospheric column along i ts  pa th ,  

i 2) ma = 10 sec z (gram/cm ) 

( z  = z e n i t h  angle  of incidence,  or t h e  angle of t h e  meteor path with t h e  

3 2 

I v e r t i c a l ) ,  t h e  momentum of t h e  me teo r i t e  can-not be t r ansmi t t ed  t o  t h e  atmosphere, The 
W 



m t e  r i t e  then s t r i k e  t h e  g ound wi th  cosmic v e l o c i t y ,  io-36 *kmjsec U L  U U L ~ ? ,  Ai: 

produces a crater 10-20 times i ts  diameter,  t h e  r e s u l t  of an explosion a t  t h e  expense 

of i ts  k i n e t i c  energy which per  gram may exceed t h e  energy of TNT 10-100 t i m e s .  The 

Canyon Diablo Crater i n  Arizona, 1200 m e t e r s  a c ross ,  may have been produced i n  such a 

manner some 50,000 years  ago, by an i r o n  meteori te  90 meters i n  diameter ,  weighing 

about 2 m i l l i o n  tons ,  t r a v e l l i n g  with a speed of 15 ki lometers  p e r  secund ( these  f igu res  

are cons i s t en t ly  der ived by s e v e r a l  independent methods). 

1 .41,  m > ma, 6 = 7.8g/cm3 as f o r  i r o n ,  the l i m i t  of crater-producing meteor i tes  

S e t t i n g  z = 45O, sec  z = 

becomes 

R >135 cm, 

or  a minimum diameter of 2.7 - When encountering t h e  e a r t h ,  a t  

1 astronomical  u n i t  o r  150 m i l l i o n  ki lometers  from t h e  sun,  me teo r i t e  v e l o c i t i e s ,  

25-40 km/sec, are of t h e  same order  as the o r b i t a l  v e l o c i t y  of t h e  e a r t h ,  30 km/sec. 

The vec to r  d i f f e r e n c e  of t h e  v e l o c i t i e s  of t h e  meteor and t h e  e a r t h  i s  the  encounter 

v e l o c i t y ,  U. According t o  t h e  d i r e c t i o n  of encounter and t h e  shape of t h e  meteor 

o r b i t ,  t h i s  may range from a few km/sec up t o  72 km/sec. 

of t h e  e a r t h ' s  o r b i t ,  t he  encounter ve loc i ty  is  given by 

Neglecting t h e  e c c e n t r i c i t y  

u = v g p - 1 a - 2 $ = z z -  cos g +  Y 

where v 

( i n  a. u . ) ,  e = e c c e n t r i c i t y ,  i = i n c l i n a t i o n  of t h e  meteor o r b i t  t o  t h e  e c l i p t i c a l  

= 29.76 km/sec = mean o r b i t a l  ve loc i ty  of t he  e a r t h ,  g = semi-major a x i s  g 

plane.  Thus, f o r  a t y p i c a l  meteor i te  o r b i t ,  swinging between an aphelion a t  3 ,5  a .u ,  

i n  t h e  a s t e r o i d a l  b e l t ,  and a pe r ihe l ion  a t  0.5 a. u. halfway between e a r t h  and sun,  

- a = 2.0 a. u . ,  e = 0.75, and 
II 

U = vg (2.5 - 1.8708 cos i) ( 3 )  

The g r a v i t a t i o n a l  f i e l d  of t h e  ea r th  a c c e l e r a t e s  t he  me teo r i t e ,  s o  t h a t  a t  en t ry  

i n t o  t h e  e a r t h ' s  atmosphere i ts  v e l o c i t y  becomes 

v = (U2+  s 2 %  ) 

where s = 11.1 km/sec ( s2  = 123 km2/sec 2 ) i s  t h e  escape v e l o c i t y  of t he  e a r t h  from a 

mean a l t i t u d e  of about 100 km. v can a l s o  b e  d i r e c t l y  ca l cu la t ed  from eq. ( 2 ) ,  



For a typical meteorite, Tadle 1 gives the encounter and entry velocities 

at different inclinations, according to eqs. (3 )  and ( 4 )  e 

The actually observed mean velocities of "asteroidal" meteoritic bodies, or those 

confined to the inner portions of the solar system, inside Jupiter's orbit k s  is 

TABLE 1 

Encounter velocity (UJ and entry velocity (v)(km/sec) for = 2.0 acu., e = 0 ,75  

Inclination, i O0 30' goo 180' 

Description Overtaking the Overtaking Crossing at Fleeting the 
earth under an in a moderately right angles to earth in 
angle in the inclined direct the ecliptic; retrograde 
orbital plane; orbit; common rare case motion in 
common case case the orbital 

plane; un- 
common case 

U 23.64 27.93 47.05 62.22 

V 26.08 30 0 4  48 e 34 63 20 

the sample case of eq. ( 3 )  and Table 11, and which chiefly concern us here, are even 

smaller, as shown in Table 2. The most interesting are the particles of zodiacal dust, 

micrometeorites of - 10" cm radius, for which the mean orbital elements are 

inferred from indirect (photometric) evidence; they spiral into the sun (with lifetimes 

4 7 of 10 to 10 years) from Poynting-Robertson (radiation) and corpuscular drag, which 

decreases their orbital eccentricities and heliocentric distances in much the same way 

as the earth's atmosphere acts on artificial satellites. 

directly only the mean distances and eccentricities, tending to make the orb-fts nearly 

circular, through perturbations in close encounters with the planets inclinations and 

eccentricities can be exchanged in a kind of equipartition, and the mean inclinations 

must be decreasing, too. For small eccentricities and inclinations, and nearly 

circular orbits with = 1 when encountering the earth, equations ( 2 )  and ( 4 )  can be 

approximated by 

Although the drag affects 



- - 5  
u = vg(eL + sin'i) 9 

v = ~ ~ ( 0 . 1 3 9 1  + e 2 + s i n  2 %  i) 

The s i m i l a r i t y  of t h e  o r b i t a l  elements and v e l o c i t i e s  i n  t h e  f i r s t  t h r e e  groups 

of Table 2 is no t i ceab le .  These elements point  t o  a common o r i g i n  from decaying shor t -  

per iod comets ( l i k e  Comet Encke), and can 

a s t e r o i d a l  b e l t  proper,  

o t  be reeonci led w i t h  an o r i g i n  from t h e  3 

TABLE 2 

Average encounter (U) and e n t r y  (v) Veloc i t i e s  of m e t e o r i t i c  p a r t i c l e s  s t a y i n g  

i n s i d e  J u p i t e r ' s  o r b i t  

Class of Objects 

U, km/sec 

v ,  km/sec 

s i n  i (av.) 

e (av.) 

Photographic 
meteors 
(Smithsonian 
Super Sdhmidt), 
magnitude 2 
and b r i g h t e r  

17.5 

20.7 

0.22 

0.54 

Meteori tes  
and f i r e -  
b a l l s ,  
magnitude 
-5 t o  -10 

15.6 

19.1 

0.17 

0.59 

Apollo 
type 

( p o t e n t i a l  
crater i n g  
me teo r i t e s ,  

diameter) 

a s t e ro ids"  11 

0.5 - 6 km 

19.6 

22.5 

0.20 

0.61 

Zodiacal 
dust  
p a r t i c l e s  
(micrometeorit- 
10-4 t o  10-5 em) 
(g = 1) 

4.7 

12 - 0  

(0 15) 

(0.05) 

between Mars and J u p i t e r .  

from t h e  o t h e r  t h ree .  

The f o u r t h  group, t h a t  of zod iaca l  d u s t ,  d i f f e r s  r a d i c a l l y  

The m i n i m u m  e n t r y  v e l o c i t y  of i n t e r p l a n e t a r y  o b j e c t s  i s  v = s = 11.1 km/sec 

when U = 0 ,  

e n t r y  may have v = 7.8 km/sec. 

P a r t i c l e s  of l u n a r  o r i g i n ,  as w e l l  as a r t i f i c i a l  sa te l l i tes  a t  grazing 

The m a s s  of zod iaca l  d u s t  captured by t h e  e a r t h  more than 100 t i m e s  exceeds t h e  

t o t a l  c o n t r i b u t i o n  from a l l  o t h e r  m e t e o r i t i c  sources  and, t hus ,  i s  t h e  most important 

component of m e t e o r i t i c  a c c r e t i o n .  According t o  Table 2 ,  i ts  mean e n t r y  v e l o c i t y  

must b e  c l o s e  t o  12 km/sec. 



3 .  I n t e r a c t i o n  t entry.  A t  meteor v e l o c i t i e s ,  which g r e a t l y  exceea rrne 

thermal molecular v e l o c i t i e s  of atmospheric gases  (high Mach number), drag r e s i s t a n c e  

i s  determined by t h e  monlemtum swept by u n i t  area of t h e  body. 

a t  low v e l o c i t y ,  such as v i s c o s i t y  f r i c t i o n ,  do no t  e x i s t  even f o r  bodies which are 

l a r g e  as compared t o  t h e  g a s 3 i n e t i c  length of pa th  (which i s  a necessary condi t ion 

f o r  t h e  a p p l i c a t i o n  of Stokes’ l a w ) .  

Complications a r i s i n g  

The shape of meteoroids is unavoidably a n a t u r a l  source of unce r t a in ty ,  though 

less than could be expected a p r i o r i ;  t h e  s p h e r i c a l  model works q u i t e  w e l l .  

equivalent  r a d i u s ,  r, can be  def ined through t h e  volume, V ,  of t h e  body, 

The 

and i t s  s u r f a c e ,  S ,  i s  r e l a t e d  t o  volume through t h e  shape parameter, B: 

B = rS /V 

For a sphere,  B = 3. For s o l i d  fragments of a no t  t oo  unusual shape, 

B = 4 t o  5. 

Independently of t h e  shape f a c t o r ,  the mean r a t i o  of c r o s s  s e c t i o n  (c) 

t o  s u r f a c e  area (S) i n  random o r i e n t a t i o n  (favored by tumbling and r o t a t i o n )  i s  

t h e  same as f o r  a sphere,  o r  one-quarter: 

u = 0.25 S (average) b ( 9 )  

Choosing t h e  c r o s s  s e c t i o n  a t  r i g h t  angles  t o  t h e  d i r e c t i o n  of motion, t h e  

atmospheric m a s s  swept pe r  u n i t  time by the cross s e c t i o n  equals  u p v ,  i t s  momentum 

apv2, whence t h e  t r a n s f e r  of momentum from body t o  atmosphere, o r  t h e  drag f o r c e  

a c t i n g  a g a i n s t  t h e  motion of t h e  body, becomes 

2 -M dv /d t  = F Kupv , 

where K ,  of t h e  o rde r  of u n i t y ,  is  t h e  c o e f f i c i e n t  of d rag ,  

S i m i l a r l y ,  t h e  k i n e t i c  energy swept i n  u n i t  t i m e  i s  h 2 n a ~ v .  I f  y is t h e  

h e a t  t r a n s f e r  c o e f f i c i e n t ,  or t h e  f r a c t i o n  of t h e  swept k i n e t i c  energy t h a t  goes 



' 6  

- h dM/dt = %yapv3 ( i i j  

Dividing (11) by (lo), the basic equation of Simultaneous ' ablation 

and motion becomes 

hdM/M = (y/ZK) vdv 

For ordinary meteors and meteorites, h = ho is the conventional heat of 

vaporization or fusion, plus a certain amount to account for pre-heating oi the 

material 

For small dust particles, micrometeorites of the zodiacal cloud, radiation losses 

compete with evaporation losses. The momentum of the meteorite is absorbed at high 

altitude, and low atmospheric density, when the absolute heat transfer %ypv3 is small, 

the temperature low and evaporation not prominent. 

ation is augmented by radiation losses, represented by a factor 0. (ratio of 

radiation to evaporation heat loss)  so that the effective heat of ablation becomes 

The conventional heat of evapor- 

3 

h = ho (1 + 0) (13) 

0 is variable along the meteor path, and equation (12) can be solved only by numerical 

integrations. However, by assuming an effective constant value of the parameter, 

0 = Oa, and also considering the other parameters as constants (which is much better 

justified), equation (12) can be symbolically integrated from v = v to v = o 

(conventionally, full stop) and yields the residual to original mass ratio 

This depends crucially on the parameters, especially on h, For small 

micrometeorites dissipating their energy essentially through radiation, 0-x, ham 

and Mf/Mo+l; the micromereorite survives, either after fusion when it descends as 

a "cosmic spherule", or without fusion when it preserves its original, probably 

angular shape 

4. The air cap and the interaction parameters, The parameters of eq. (14) 

depend on the presence and depth of an air cushion cr cap, fmmed by air mcjlecules and 



. 7  

meteor vapors 011 &e f i v r r t  side sf =he m,ctesrofc',. Th.p r o l e  nf vapors is subordinate  

t o  t h a t  of t h e  a i r  molecules which, by t h e i r  impact, and by aerodynamic p res su re  

which exceeds t h e  vapor p re s su re ,  preserve a "bald f ron t " ,  t o  7 8 O  from t h e  apex of 

motion a t  v = 16km/sec, t o  61' a t  60 km/sec ( f o r  a s p h e r i c a l  model) a 

The c o e f f i c i e n t s  of drag and h e a t  t r a n s f e r  depend on t h e  th i ckness  of t h e  a i r  

cap, which r e g u l a t e s  t h e  flow of h e a t  t o  the meteoroid and decreases  y wi th in  a w& 

range, and, t o  a much lesser degree a l s o  a f f e c t s  K; t h e  l a t te r  may include t h e  

r e c o i l ,  o r  "rocket e f f e c t "  of t h e  outflowing vapors. 

The k i n e t i c  thickness  of t h e  a i r  cap, d ,  i s  t h e  number of c o l l i s f o n a l  "mean 
L 

f r e e  paths", A ,  o r  half-energy ranges across t h e  cushion; A varies with t h e  meteor 

v e l o c i t y  and is considerably l a r g e r  than the  usua l  g a s k i n e t i c  va lue ,  For a s p h e r i c a l  

meteoroid 

d = 0.75 (rp>/(Xp) (15) 

Because Ap i s  a constant  f o r  given v e l o c i t y ,  and p d r  a t  t h e  c r i t i ca l  level 

of momentum t r a n s f e r  (dece le ra t ion )  o r  a b l a t i o n ,  roughly 

(16) 2 d - r  

Table 3 d e s c r i b e s  t h e  v a r i a t i o n  of Xp wi th  v e l o c i t y  f o r  n i t r o g e n  gas and, p r a c t i c a l l y ,  

f o r  atmospheric a i r ,  

TABLE 3 

Half-energy a i r  m a s s ,  hp 

v,  km/sec 0.6 1 . 2  2.3 4.7 9 . 4  13 .2  18 .7  26 53 75 

hp,10-8g/cm2 1.3 1.9 3 . 1  4.8 7.0 8.4 8-9 14.2 13.8 1 3 - 6  

Table 4 g ives  K as depending on and v e l o c i t y ,  including t h e  r e c o i l  e f f e c t .  

Micrometeori tes  are isothermal ,  evaporation proceeds i s o t r o p i c a l l y  and t h e  r e c o i l  

e f f e c t  i s  z e r o ;  w i th  d = 0, t h e r e  i s  no a i r  cap; a i r  molecules are c o l l i d i n g  with 

t h e  s u r f a c e  i n d i v i d u a l l y ,  without mutual i n t e r f e r e n c e .  Other, somewhat l a r g e r  

meteoroids  are no t  isothermal ,  evaporation is  more i n t e n s e  on t h e  f r o n t  s i d e  and t h e  

r e c o i l  of vapors  inc reases  t h e  apparent drag. 

bo th  for completely elastic and completely i n e l a s t i c  c o l l i s i o n s  wi th  a s p h e r i c a l  

c 

Without r e c o i l ,  a t  fi = 0 ,  K = 1, 



meteoroid (or of any other shape in and c i v s e i y  s u e  ZVL 

intermediate cases. For a developing air cap, hydrodynamic flow around the 

meteoroid cushions off the drag, K+-0.5, without much of a recoil effect because 

evaporation is suppressed by shielding. 

TABLE 4 
Drag coefficient, K, including recoil 

d 0 1 2 4 6 10 m 

Micrometeorites r O.O? cm; all velocities 

K IJ, 1.00 0.75 0 . 6 3  0.56 0.54 0.52 0.50 

Stony meteors, r > 0.1 cm 

V = 12 km/sec, K = 1-00 0.75 0.69 0.56 0.54 0.52 0.50 

V = 20 km/sec, K = 1.28 1.28 1.28 0.64 0.54 0.52 0.50 

V = 30 km/sec, K = 1.92 1.92 1.92 0.96 0,64 0.52 0-50 

V = 60 km/sec, K = 3.84 3.84 3.84 1.92 1.28 0.77 0.50 

TABLE 5 

Coefficient of heat transfer, y, as depending on the kinetic thickness of the air 

cap, 6 
(a) conductivity only: ordinary meteors and fireballs 

d 0 1 2 4 8 18 40 -40 

y yo=0.6to0.8 +y+0.29 0.58 0 - 3 9  0,25 0.15 0,lO 0 e 6d-’ 

d 

Y 

(b) conductivity turbulent convection and radiation from cap: large > meteorites 

5 lo2 - 10 3 lo3 lo5 103 - 105, >lo 

0.6/c 
laminar 
flow 

1.2/a 3/G 
turbulent 

(0.9 loglo d-lm5)/’Z 
Interpolation 

flow formula 

Table 5 contains heat transfer coefficients as conditioned by the air capo In 

part (a) of the table, for d = 0, or an unshfelded meteoroid surface exposed to full 

impacts of the air molecules, yo = 0.6 for iron and y o  = 0.8 for a stony surface, 

(b) of the table summarizes the results of theoretical study of air caps in large 

I 

Part 



taken into account: ionization, radiation, vaporization, spraying of the melt, 

turbulent convective transfer, etc. 

9 

5. Kinetic thickness of air cap. The type of meteoroid interaction with the 

atmosphere depends primarily on the thickness of the air cap and on the process of 

dissipation of the kinetic energy. This again depends on the size and velocity of 

the meteor. 

For very rough estimates, serving as guidelines to the general setting, and 

for weak ablation when a considerable fraction of mass remains, one may assume that 

at the characteristic layer where the meteor energy dissipation fakes place the 

penetrated air mass, 
f 

ma = p H sec z (17) 

(B = scale height or equivalent height of the atmosphere), approximately equals 

the load of the meteoroid as given by eq. (l), With H = 6.5 X 10 cm as a broad 

average for the meteor region of the atmosphere, and sec z = 1.41 as for average 

incidence, the characteristic value of atmospheric density becomes 

5 

(continued on next page) 



where r ro is a R  effect Ive value of the 

non-ablating case, r = r e For complete d 

at h a l f  mass i s  r = 0.8 ro. 

much deviating from the non-abBst,ng case, 

0 

Assuming t h e  

, 
w 1.2 x loE;" 4-,6' 

Fn? 

d = . e r ' b )  0 

R? 0 



6. 

(a) Micrometeorites, presumably dense mineral and metall le p a r t i c l e s  Pron 

the zodiacal cloud which a re  not observed i q d i v i d t i a l l y  a t  en t r y  into the aZmsp%:e 

(because of t h e i r  fa intness).  

l y s i s  o f  the zodiacal l i g h t e  Their mass captured by the earth  exceeds % o m  1'32 

Types of  meteoric Dhenome na 

Their  exPgistence i s  i n fe r red  f r ~ m  a photomtr ic  ana- 

Attempts t o  l i n k  them vritb larger "ordinary" meteors, l j j  as.sum:ng e nigher 

power, p r u 4 , 5  ( t o  make the small pa'r t ic les more numerous), are  unacceptable 3s 

they disregard photometric data and diffsactron phemnena. 

co l l ec ted  from the bottom of the P a c i f i c  Ocean can be joterpretad as mltm rn,c-o- 

meteorites from the zodiacal clouci. 

mass o f  the cloud h i & ,  thus, must consist predominantly of m ~ m ~ a ~ j  sbsneliike 

p a r t i c l e s .  

when in terpreted through the physical rhesry o f  their fl,gbt t h ~ t l g ~  

(which gives the percentage of molten spherule% v e s s m  tinsnoRtec a ~ g u 9 a ~  o b j e c t s 4  

and the d i s t o r t i o n  of the frequency law of eq. (5'1 ) due EO &%ad !OR) 

ra ther  narrow range o f  t h e i r  et-ifry ve loc i t ies,  v = 1 9 . 1  *_Q l z02  h i s a c ,  0~ f.; veyy 

low encounter ve loc i t ies,  U = 0 t o  5.1 h / s e c .  T t r s  i s  i n  agreeanar,x- w i t h  CQXE 

of the o r b i t a l  cha rac te r i s t i cs  of the zsdlscel particles (see Table  2 ? Q  

Hetall ie splinerules 

The metal1 I C  mass t s  less thaa 1 %  of t h e  tooaa~ 

The d i s t r i b u t i o n  ef opheruie d:ameters, ra l ig l f ig frm 8 TS % w~renms, 

p s i r ~ t s  ts 3 

Ttre !a,ac 

ve loc i t y ,  so confirmed, also puts them i n t o  a d i f f e r e n ?  category From she. "srd~carpG' 

meteors which have much h i g h o  ve!oc i t ' ,es ( T a b l e  2 ) -  



For an upper 1 i m i t  of ro < O"05 cm, ti'= 3 to 0, eq. (20) yields d r n < ~ . ~ e  

to Oe16, thus small or insignificant. for them (Tables 4 and 5 ) ,  K 1,0G, 

T =  0.8 (stone) or 0,6 ( i ron) .  From eq. ( l e a ) ,  the characteristic etmspheres 

density is 

for a stony partic 
I 

right-hand s i d e  o f  eq, !1 1 )  

0.1 p v3 =z 4 x IC" ergdcni2 sec 

which equals black body r a d i a t i o n  at about I T W O K ,  

temperature will be lower, about l:*'K, w i t h  6 '-D 6 as the r a t io  o f  radiatTo~ CD 

evaporation losses and 1 + ea- 8. 

Because of evapsratjon, the 

For Re =i 8 .x PO" erq/a 3s the total neat of  

evaporation, 

survival mass ratio of 

T =  0.6, K = I v = 1 , ~  x J O  8 c m j s x ,  eqs. ( ? 3 )  amt (ILL) y i e l d  a > 

Without radiation, 1 + 6 = 1 ,  the mass r a t i s  wormlid have been 2.5 x IS'='", rhus 

negligible. Through radiative C Q G ~ ~ Q ~ ,  ow.: one-half' t h e  ma605 i s  eot-serve,do 



(b) 'V isual "  meteorxi. The ordinary ~ ~ B Q P S ,  v i s i b l e  t o  the mked eye, as 

wel l  as those recorded photographically, are i n  the mass r m g e  from Z.03 t o  ? 

gram and over (as derived'fsom the emitted Irght). Th!s m b l d  correSpo1Zd to 

r a d i i  o f  compact stones o f  the order o f  0.15 to 0.5 ~ m , ~  c h a r a c t e r i s t i c  atnaspharlt 

they are displayed a t  a l t i t u d e s  o f  83-100 hy according to velocl ty,  w e r e  the 

atmospheric derzsity is seuerai hundred t i m e s  less,, and where also the d ! ~ + T a y  o f  

bona f i d e  micrometeorites must Q C C U ~ .  

The explanation o f  the discrepancy i s  t h a t  these m j e c t s  are dussrba'l384, 

loosely bound conglomerates o f  dust-grains which break up a t  en t r y  when t h e  drag 

pressure p \r2 a t ta ins  about IO* dyyne/cm2 (G.01 o f  atmospheric pressure). Their  

luminous output c o r r ~ ~ p o n d s  6s the total  mass, whereas the process o f  arlatim 

and decelerat ion i s  t ha t  f o r  the indiv idual  grains. The g r a i n  zad i '  way be 3s 

small as genuine mfcrometesrites, from 5 to i~ x IC."' ern (~raconlds), or  oc the 

order o f  0.03-0.~3 cm as f o r  the average sporadic mel-,eors. 

Many o f  these meteors are organized i n t o  streams, or  s.hswe.rs, d ' y e c t l y  re- 

la ted t o  comets. Others are w d i G 9  QF random incidence,; probably these coo 

are members o f  ancient ahswers, disorganized by planetary perturbations, %hey 

apparently become detached f a ~ m  ~ o m t  nuclei when the Ices [WtsZppleGs icy  con- 

glomerate) evaporate and dustball skeleton5 rema!;n, eo float i n t o  .n terplaretaa-y 

space wken blown away by the cometary gases, 
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fewer than from zodiacal dust, because o f  t h e i r  much smaller t o t a l  ma%, as we l l  

as t h e i r  higher en t ry  v e l o c i t i e s  (see Table 2). Thus, f o r  t h e i r  slowest group-- 

those moving i n  d i r e c t  o r b i t s  o f  small eccent r i c i t y - -vo  = 21 km/sec (Arizona 

Expedi t ion f o r  the  Study of Meteors), charactesIs t Ic  a l t i t u d e  69 km (same as f o r  

I 

micrometeorites o f  ro = 10" cm), pm P 4 x IO'" g/cmJ, but  ro - 0.03 cm as de- 

r i ved  from ab la t i on  (wi thout  much deceleration; eq. (22) i s  not appl icable i n  t h i s  

case, as it re fe rs  t o  feebly  ab la t ing  meteoroids), ( & p )  - IOm7 g/c# (Table 3 ) )  

r 0.7 ro = 0.02 cm, eq. (15) y ie lds 

3 d = 6 x 

thus neg l ig ib le .  

the heat intake i s  now 0.1 p va P 2.5 x 10" erg/& sec, corresponding t o  an 

equ i l i b r i um rad ia t i on  temperature o f  2510' which, on account o f  evaporation, Is 

lowered t o  about 1950° w i t h  8 a 0.4. Se t t i ng  1 + ea= 1.6 as an average I n  eq. 

(13), and ho = 8 x lo", eq. (14) y ie lds 

Hence, from Tables 4 and 5, K = 1.3, ?' = qo - 0.8. Further, 

rr 

The dustbal 

res ldual  nuclel .  

rf/ro = 0.07 

s, even o f  the slowest kind, can 

The Oraconids o f  1946, ve loc i t y  

g raph ica l l y  (Jacchia, Kopal,, and M i l  

(Opik) reveals t h e i r  extreme dustbal 

t o  0.010 cm'gra in  radius as an upper 

I 4  

eave behind but neg l i g ib le  

22 km/sec, were thoroughly studied photo- 

man). In te rpre ta t  ion o f  these observet ions 

character, o f  small g ra in  s f t e ,  wf th  0,005 

1 i m i t ,  much smaller than f o r  the average 



v isual  meteors. For t o t a l  dustbal l  masses ranging from O e 3  t o  70 gram the mean 

a l t i t u d e  o f  t h e i r  t r a i l s  was su rp r i s ing l y  constant, around 93.1 km, i nd i ca t i ng  tha t  
I .  

. ' t h e  s i ze  o f  the ab la t i ng  grains, and the break-up press i re  o f  the dustballs was 

independent of  t h e i r  t o t a l  mass, 

( c )  Compact meteorites. The occurrence o f  stone and i ron  meteor i te falls 

points  t o  the existence o f  compact meteoroids among the larger grobps, although 

there i s  l i t t l e  evidence f o r  them i n  ordinary meteor observations which overwhel- 

mingly r e f e r  t o  dustbal ls.  Hlcrometeorites are Preserved through r a d i a t i v e  d i s s i -  

pat ion of  energy, desp t e  the large value o f  'y', the c o e f f i c i e n t  o f  heat t r a m f e r .  

On the contrary, large meteoroids which penetrate deep i n t o  the atmosphere canno't 

r e l y  on radiat ion.  Bo l i n g  ( fpr  stone) or f us ion  ( f o r  i ron)  i s  so intense that  

p r a c t i c a l l y  8 = 0, 1 + 8 = 1. However, w i t h  deep penetration, large p and tncreas- 

ing r , the a i r  cap grows according t o  eq. (20) and decreases (Table 3). Ac- 

cording t o  eq. (14), t h i s  now favors the su rv i va l  o f  a conslderable f r a c t i o n  o f  

the mass o f  the meteoroid, 

0 

. In  the meteor i te c lass w i t h  large a i r  cap thickness d, K 3  0.5, 8 = C, - 
loxo erg/g fo r  stone i n  vapor izat ion and 5 x 10'' f o r  i r o n  meteorites 

on spraying and vaporization. With these assumed parameters, the 

h = h o ? 8 x  

i n  mixed fus 

su rv i va l  rad 

5, and are g 

i f o r  meteorites are estimated according t o  eqs. (20) ( 14) and Table 

ven i n  fable 6. 
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Table 6, Survival radii ( r  cm) for meteorites. 
f '  

Stone ( s- 304 9/cm3) 

r cm 5 
0' 

d 680 

'y' 0 e 023 

v = 12 km/sec, rf  = 

v = 15 km/sec, rf = 

v = 20 kdsec,  rf = 

v = 25 km/sec, rf  = 

v = 30 km/sec, rf = 

v = 40 km/sec, rf = < O c a  

v = 60 km/sec, rf  =<0.094 

4.3 

3.9 

3.2 

2.5 

1.9 

r cm 5 0' 

d 1600 

1" 0.042 

v = 12 km/sec, r f  = 3.1 

v = 15 km/sec, rf = 2.4 

v = 20 km/sec, rf = 1.4 

v = 2 5  km/oec, rf = (0.7 

v = 30 km/sec, rf =<0.3 

v = 40 km/sec, rf ~ ( 0 . 0 3  

v = 60 km/sec, rf  

, 

20 

loqO0 

0 024 

17.0 

15.4 

12.6 

998 

7.1 

< 3.2  

< 0.3 

5G 

68000 

0,0128 

46 

44 

39 

34 

29 

19 

<5 

~rsn ( $= s g/cm3) 

10 20 -w 
6400 25600 I .6x105 

0.029 0.0182 o e 0 ~ 9 2  

7.3 10.4 43 

6.0 14.6 43 

4.1 11.3 38 

2.5 8.4 32 

<1.4 5.7 26 

~ 0 ~ 3  < 2.1 16 

(10-3 < 0.2 < 5  

180 

2JX10" 

0 OC74 

95 

92 

87 

00 

13 

57 

e8 

100 

6 . 4 ~  1 O5 

0.0054 

94 

91 

85 
-7 
i f  

69 

52 

26 

200 

1 0  1x106 

0 0 o c a  

194 

391 

104 

175 

165 

1 43 

94 



I n  the deep atmosphere, there i s  another fac to r  operat ive i n  the destruc- 

t i o n  of meteorites which have retained t h e i r  cosmic ve loc i t i es :  i t  i s  the crush- 

ing by aerodynamic pressure. This i s  of importance c h i e f l y  f o r  stony meteorites 

which break up i n t o  numberless fragments a t  a l t i t u d e s  from 4 t o  23 km, according 

t o  ve loc i ty .  A t  t h i s  'Hemnungspunkt" the breakup leads to a sudden increase % n  

area, evaporation, and brightness, s im i l a r  t o  an explosion, The mean crushing 

strength f o r  the stony meteorites equal t o  - P \12 a t  the p o i n t  o f  breakup, i s  

1.7 x IO8 dyne/cm2, 170 atmospheres, about one-half the lowest f igures for  sand- 

stone or l imestone and one-tenth o f  those for basal t  or granite. Nickel-:ron 

meteorites, w i t h  a compressive strength o f  about 2 x IOLo, would not break up 

even i n  the lowest atmosphere unless t h e i r  v e l o c i t y  exceeds 55 km/sec, 

) 1  
2 
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